Selasa, 03 November 2009

Fluida Statis lanjutan

Seperti yang sudah gurumuda jelaskan di awal tulisan ini, setiap fluida bisa kita anggap sebagai fluida ideal. Fluida ideal tidak mempunyai viskositas alias kekentalan. Jika kita mengandaikan suatu fluida ideal mengalir dalam sebuah pipa, setiap bagian fluida tersebut bergerak dengan laju (v) yang sama. Berbeda dengan fluida ideal, fluida riil alias fluida yang kita jumpai dalam kehidupan sehari-hari mempunyai viskositas. Karena mempunyai viskositas, maka ketika mengalir dalam sebuah pipa, misalnya, laju setiap bagian fluida berbeda-beda. Lapisan fluida yang berada tengah-tengah bergerak lebih cepat (v besar), sebaliknya lapisan fluida yang nempel dengan pipa tidak bergerak alias diam (v = 0). Jadi dari tengah ke pinggir pipa, setiap bagian fluida tersebut bergerak dengan laju yang berbeda-beda. Untuk memudahkan pemahamanmu, amati gambar di bawah….

Keterangan :
R = jari-jari pipa/tabung
v1 = laju aliran fluida yang berada di tengah/sumbu tabung
v2 = laju aliran fluida yang berjarak r2 dari pinggir tabung
v3 = laju aliran fluida yang berjarak r3 dari pinggir tabung
v4 = laju aliran fluida yang berjarak r4 dari pinggir tabung
r = jarak

Gambar ini cuma ilustrasi saja. Oya, lupa… laju setiap bagian fluida berbeda-beda karena adanya kohesi dan adhesi (mirip seperti penjelasan sebelumnya, ketika kita menurunkan persamaan koofisien viskositas). Si viskositas bikin fluida sebel… ;) Fluida terseok-seok dalam pipa (tabung). Hehe….
Agar laju aliran setiap bagian fluida sama, maka perlu ada perbedaan tekanan pada kedua ujung pipa atau tabung apapun yang dilalui fluida. Yang dimaksudkan dengan fluida di sini adalah fluida riil/nyata, jangan lupa ya. Contohnya air atau minyak yang ngalir melalui pipa, darah yang mengalir dalam pembuluh darah dkk… Selain membantu suatu fluida riil mengalir dengan lancar, perbedaan tekanan juga bisa membuat si sluida bisa mengalir pada pipa yang ketinggiannya berbeda.
Almahrum Jean Louis Marie Poiseuille, mantan ilmuwan perancis ;) yang tertarik pada aspek-aspek fisika dari peredaraan darah manusia, melakukan penelitian untuk menyelidiki bagiamana faktor-faktor, seperti perbedaan tekanan, luas penampang tabung dan ukuran tabung mempengaruhi laju fluida riil. (sstt.. pembuluh darah kita juga bentuknya mirip pipa, cuma ukurannya kecil sekali). Hasil yang diperoleh Almahrum Jean Louis Marie Poiseuille, dikenal dengan julukan persamaan Poiseuille.
Sekarang mari kita oprek persamaan almahrum Poiseuille. Persamaan Poiseuille ini bisa kita turunkan menggunakan bantuan persamaan koofisien viskositas yang telah kita turunkan sebelumnya. Kita gunakan persamaan viskositas karena kasusnya mirip walau tak sama…. Ketika menurunkan persamaan koofisien viskositas, kita meninjau aliran lapisan fluida riil antara 2 pelat sejajar dan fluida tersebut bisa bergerak karena adanya gaya tarik (F). Bedanya, persamaan Poiseuille yang akan kita turunkan sebenarnya menyatakan faktor-faktor yang mempengaruhi aliran fluida riil dalam pipa/tabung dan fluida mengalir akibat adanya perbedaan tekanan. Karenanya, persamaan koofisien viskositas perlu dioprek dan disesuaikan lagi. Kita tulis persamaannya dulu ya…
viskositas-2Karena fluida bisa mengalir akibat adanya perbedaan tekanan (fluida mengalir dari tempat yang tekanannya tinggi ke tempat yang tekanannya rendah), maka F kita ganti dengan p1-p2 (p1 > p2).
viskositas-3Ketika menurunkan persamaan koofisien viskositas, kita meninjau aliran lapisan fluida riil antara 2 pelat sejajar. Setiap bagian fluida tersebut mengalami perubahan kecepatan teratur sejauh l. Untuk kasus ini, laju aliran fluida mengalami perubahan secara teratur dari sumbu tabung sampai ke tepi tabung. Fluida yang berada di sumbu tabung mengalir dengan laju (v) yang lebih besar. Semakin ke pinggir, laju fluida semakin kecil. Jari-jari tabung = jarak antara sumbu tabung dengan tepi tabung = R. Jarak antara setiap bagian fluida dengan tepi tabung = r. Karena jumlah setiap bagian fluida itu sangat banyak dan jaraknya dari tepi tabung juga berbeda-beda, maka kita cukup menulis seperti ini :
v1 = laju fluida yang berada pada jarak r1 dari tepi tabung (r1 = R)
v2 = laju fluida yang berada pada jarak r2 dari tepi tabung (r2 < r1)
v3 = laju fluida yang berada pada jarak r3 dari tepi tabung (r3 < r2 < r1)
v4 = laju fluida yang berada pada jarak r4 dari tepi tabung (r4 3 < r2 < r1)
………………………………………..
vn = laju fluida yang berada pada jarak rn dari tepi tabung (rn < …… < r4 < r3 < r2 < r1)
Jumlah setiap bagian fluida sangat banyak dan kita juga tidak tahu secara pasti berapa jumlahnya yang sebenarnya, maka cukup ditulis dengan simbol n. Setiap bagian fluida mengalami perubahan laju (v) secara teratur, dari sumbu tabung (r1 = R) sampai tepi tabung (rn). Dari sumbu tabung (r1 = R) ke tepi tabung (rn), laju setiap bagian fluida makin kecil (v1 > v2 > v3 > v4 > …. > vn). Cara praktis untuk menentukan jarak terjadinya perubahan laju aliran fluida riil dalam tabung adalah menggunakan kalkulus. Tapi kalau pakai kalkulus malah gak nyambung alias beribet….. Dari penjelasan di atas, kita bisa punya gambaran bahwa dari R ke rn, laju fluida semakin kecil. Ingat ya, panjang pipa = L. Jika dioprek dengan kalkulus, akan diperoleh persamaan :
viskositas-4Wuh, bahasa apa ini. he2…. Ini adalah persamaan laju aliran fluida pada jarak r dari pipa yang berjari-jari R. Kalau bingung sambil lihat gambar di atas…. Perlu diketahui bahwa fluida mengalir dalam pipa alias tabung, sehingga kita perlu meninjau laju aliran volume fluida tersebut. Cara praktis untuk menghitung laju aliran volume fluida juga menggunakan kalkulus. Gurumuda jelaskan pengantarnya saja…
Di dalam tabung ada fluida. Misalnya kita membagi fluida menjadi potongan-potongan yang sangat kecil, di mana setiap potongan tersebut mempunyai satuan luas dA, berjarak dr dari sumbu tabung dan mempunyai laju aliran v. Secara matematis bisa ditulis sebagai berikut :
dA1 = potongan fluida 1, yang berjarak dr1 dari sumbu tabung
dA2 = potongan fluida 2, yang berjarak dr2 dari sumbu tabung
dA3 = potongan fluida 3, yang berjarak dr3 dari sumbu tabung
…………………………….
dAn = potongan fluida n, yang berjarak drn dari sumbu tabung
Potongan2 fluida sangat banyak, sehingga cukup ditulis dengan simbol n saja, biar lebih praktis (n = terakhir). Laju aliran volume setiap potongan fluida tersebut, secara matematis bisa ditulis sebagai berikut :
viskositas-5Setiap potongan fluida tersebut berada pada jarak r = 0 sampai r = R (R = jari-jari tabung). Dengan kata lain, jarak setiap potongan fluida tersebut berbeda-beda jika diukur dari sumbu tabung. Jika kita oprek dengan kalkulus (diintegralkan), maka akan diperoleh persamaan laju aliran volume fluida dalam tabung :
viskositas-6
Keterangan :
viskositas-7
Berdasarkan persamaan Poiseuille di atas, tampak bahwa laju aliran volume fluida alias debit (Q) sebanding dengan pangkat empat jari-jari tabung (R4), gradien tekanan (p2-p1/L) dan berbanding terbalik dengan viskositas. Jika jari-jari tabung ditambahkan (koofisien viskositas dan gradien tekanan tetap), maka laju aliran fluida meningkat sebesar faktor 16. Kalau dirimu mau kuliah di bagian teknik perledingan atau teknik pertubuhan, pahami persamaan almahrum Poiseuille ini dengan baik. Konsep dasar perancangan pipa, jarum suntik dkk menggunakan persamaan ini. Debit fluida sebanding dengan R4 (R = jari-jari tabung). Karenanya, jari-jari jarum suntik atau jari-jari pipa perlu diperhitungkan secara saksama. Misalnya, jika kita menggandakan jari-jari dalam jarum (r x 2), maka debit cairan yang nyemprot = menaikan gaya tekan ibu jari sebesar 16 kali. Salah hitung bisa overdosis… he2…..
Persamaan almahrum Poiseuille juga menunjukkan bahwa pangkat empat jari-jari (r4), berbanding terbalik dengan perbedaan tekanan antara kedua ujung pipa. Misalnya mula-mula darah mengalir dalam pembuluh darah yang mempunyai jari-jari dalam sebesar r. Kalau terdapat penyempitan pembuluh darah (misalnya r/2 = jari-jari dalam pembuluh darah berkurang 2 kali), maka diperlukan perbedaan tekanan sebesar 16 kali untuk membuat darah mengalir seperti semula (biar debit alias laju aliran volume darah tetap). Coba bayangkan… apa jantung gak copot gitu, kalau harus kerja keras untuk memompa biar darahnya bisa ngalir dengan debit yang sama… makanya kalau orang yang mengalami penyempitan pembuluh darah bisa kena tekanan darah tinggi, bahkan stroke karena jantung dipaksa untuk memompa lebih keras. Demikian juga orang yang gemuk, punya banyak kolesterol yang mempersempit pembuluh darah. Pembuluh darah nyempit dikit aja, jantung harus lembur… mending langsing saja, biar pembuluh darah normal, jantung pun ikut2an senang. Kalau si jantung gak lembur khan dirimu ikut2an senang, pacaran jalan terus… he2….

Referensi
Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga
Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga
Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga
Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga


Tidak ada komentar:

Posting Komentar